Home forums ANOVA MANOVA?

Viewing 1 reply thread
  • Author
    Posts
    • #211
      MattMcMullen
      Participant

      Greetings, is it possible to conduct a MANOVA with afex? Thanks.

    • #212
      henrik
      Keymaster

      In principle yes, but potentially not in the way you want it.

      Let me explain: To calculate the ANOVA afex uses car::Anova which per default calculates both univariate (i.e., repeated-measures ANOVA) and multivariate tests for the repeated-measures factors. Per default, only the univariate tests are reported. But the multivariate tests can be obtained easily via summary(model$Anova). For example:

      
      library("afex")
      data(md_12.1)
      a1 <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise"))
      
      summary(a1$Anova)
      # Type III Repeated Measures MANOVA Tests:
      # 
      # ------------------------------------------
      #  
      # Term: (Intercept) 
      # 
      #  Response transformation matrix:
      #            (Intercept)
      # X0_absent            1
      # X0_present           1
      # X4_absent            1
      # X4_present           1
      # X8_absent            1
      # X8_present           1
      # 
      # Sum of squares and products for the hypothesis:
      #             (Intercept)
      # (Intercept)   116553960
      # 
      # Multivariate Tests: (Intercept)
      #                  Df test stat approx F num Df den Df     Pr(>F)    
      # Pillai            1   0.98518 598.4492      1      9 1.5266e-09 ***
      # Wilks             1   0.01482 598.4492      1      9 1.5266e-09 ***
      # Hotelling-Lawley  1  66.49435 598.4492      1      9 1.5266e-09 ***
      # Roy               1  66.49435 598.4492      1      9 1.5266e-09 ***
      # ---
      # Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
      # 
      # ------------------------------------------
      #  
      # Term: angle 
      # 
      #  Response transformation matrix:
      #            angle1 angle2
      # X0_absent       1      0
      # X0_present      1      0
      # X4_absent       0      1
      # X4_present      0      1
      # X8_absent      -1     -1
      # X8_present     -1     -1
      # 
      # Sum of squares and products for the hypothesis:
      #         angle1 angle2
      # angle1 1128960 403200
      # angle2  403200 144000
      # 
      # Multivariate Tests: angle
      #                  Df test stat approx F num Df den Df     Pr(>F)    
      # Pillai            1  0.887597 31.58624      2      8 0.00015963 ***
      # Wilks             1  0.112403 31.58624      2      8 0.00015963 ***
      # Hotelling-Lawley  1  7.896559 31.58624      2      8 0.00015963 ***
      # Roy               1  7.896559 31.58624      2      8 0.00015963 ***
      # ---
      # Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
      # 
      # ------------------------------------------
      #  
      # Term: noise 
      # 
      #  Response transformation matrix:
      #            noise1
      # X0_absent       1
      # X0_present     -1
      # X4_absent       1
      # X4_present     -1
      # X8_absent       1
      # X8_present     -1
      # 
      # Sum of squares and products for the hypothesis:
      #         noise1
      # noise1 1713960
      # 
      # Multivariate Tests: noise
      #                  Df test stat approx F num Df den Df     Pr(>F)    
      # Pillai            1  0.789552 33.76596      1      9 0.00025597 ***
      # Wilks             1  0.210448 33.76596      1      9 0.00025597 ***
      # Hotelling-Lawley  1  3.751773 33.76596      1      9 0.00025597 ***
      # Roy               1  3.751773 33.76596      1      9 0.00025597 ***
      # ---
      # Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
      # 
      # ------------------------------------------
      #  
      # Term: angle:noise 
      # 
      #  Response transformation matrix:
      #            angle1:noise1 angle2:noise1
      # X0_absent              1             0
      # X0_present            -1             0
      # X4_absent              0             1
      # X4_present             0            -1
      # X8_absent             -1            -1
      # X8_present             1             1
      # 
      # Sum of squares and products for the hypothesis:
      #               angle1:noise1 angle2:noise1
      # angle1:noise1        416160        171360
      # angle2:noise1        171360         70560
      # 
      # Multivariate Tests: angle:noise
      #                  Df test stat approx F num Df den Df     Pr(>F)    
      # Pillai            1  0.918223 44.91353      2      8 4.4722e-05 ***
      # Wilks             1  0.081777 44.91353      2      8 4.4722e-05 ***
      # Hotelling-Lawley  1 11.228381 44.91353      2      8 4.4722e-05 ***
      # Roy               1 11.228381 44.91353      2      8 4.4722e-05 ***
      # ---
      # Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
      # 
      # Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
      # 
      #                   SS num Df Error SS den Df       F    Pr(>F)    
      # (Intercept) 19425660      1   292140      9 598.449 1.527e-09 ***
      # angle         289920      2    64080     18  40.719 2.087e-07 ***
      # noise         285660      1    76140      9  33.766  0.000256 ***
      # angle:noise   105120      2    20880     18  45.310 9.424e-08 ***
      # ---
      # Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
      # 
      # 
      # Mauchly Tests for Sphericity
      # 
      #             Test statistic p-value
      # angle              0.96011 0.84972
      # angle:noise        0.89378 0.63814
      # 
      # 
      # Greenhouse-Geisser and Huynh-Feldt Corrections
      #  for Departure from Sphericity
      # 
      #              GG eps Pr(>F[GG])    
      # angle       0.96164  3.402e-07 ***
      # angle:noise 0.90398  3.454e-07 ***
      # ---
      # Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
      # 
      #               HF eps   Pr(>F[HF])
      # angle       1.217564 2.086763e-07
      # angle:noise 1.117870 9.424093e-08
      # Warning message:
      # In summary.Anova.mlm(a1$Anova, multivariate = TRUE) :
      #   HF eps > 1 treated as 1

      Hope that helps!

Viewing 1 reply thread
  • You must be logged in to reply to this topic.