- This topic has 1 reply, 2 voices, and was last updated 6 years, 8 months ago by henrik.
Viewing 1 reply thread
-
AuthorPosts
-
-
March 22, 2018 at 03:26 GMT+0000 #211MattMcMullenParticipant
Greetings, is it possible to conduct a MANOVA with afex? Thanks.
-
March 22, 2018 at 13:56 GMT+0000 #212henrikKeymaster
In principle yes, but potentially not in the way you want it.
Let me explain: To calculate the ANOVA
afex
usescar::Anova
which per default calculates both univariate (i.e., repeated-measures ANOVA) and multivariate tests for the repeated-measures factors. Per default, only the univariate tests are reported. But the multivariate tests can be obtained easily viasummary(model$Anova)
. For example:library("afex") data(md_12.1) a1 <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise")) summary(a1$Anova) # Type III Repeated Measures MANOVA Tests: # # ------------------------------------------ # # Term: (Intercept) # # Response transformation matrix: # (Intercept) # X0_absent 1 # X0_present 1 # X4_absent 1 # X4_present 1 # X8_absent 1 # X8_present 1 # # Sum of squares and products for the hypothesis: # (Intercept) # (Intercept) 116553960 # # Multivariate Tests: (Intercept) # Df test stat approx F num Df den Df Pr(>F) # Pillai 1 0.98518 598.4492 1 9 1.5266e-09 *** # Wilks 1 0.01482 598.4492 1 9 1.5266e-09 *** # Hotelling-Lawley 1 66.49435 598.4492 1 9 1.5266e-09 *** # Roy 1 66.49435 598.4492 1 9 1.5266e-09 *** # --- # Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # # ------------------------------------------ # # Term: angle # # Response transformation matrix: # angle1 angle2 # X0_absent 1 0 # X0_present 1 0 # X4_absent 0 1 # X4_present 0 1 # X8_absent -1 -1 # X8_present -1 -1 # # Sum of squares and products for the hypothesis: # angle1 angle2 # angle1 1128960 403200 # angle2 403200 144000 # # Multivariate Tests: angle # Df test stat approx F num Df den Df Pr(>F) # Pillai 1 0.887597 31.58624 2 8 0.00015963 *** # Wilks 1 0.112403 31.58624 2 8 0.00015963 *** # Hotelling-Lawley 1 7.896559 31.58624 2 8 0.00015963 *** # Roy 1 7.896559 31.58624 2 8 0.00015963 *** # --- # Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # # ------------------------------------------ # # Term: noise # # Response transformation matrix: # noise1 # X0_absent 1 # X0_present -1 # X4_absent 1 # X4_present -1 # X8_absent 1 # X8_present -1 # # Sum of squares and products for the hypothesis: # noise1 # noise1 1713960 # # Multivariate Tests: noise # Df test stat approx F num Df den Df Pr(>F) # Pillai 1 0.789552 33.76596 1 9 0.00025597 *** # Wilks 1 0.210448 33.76596 1 9 0.00025597 *** # Hotelling-Lawley 1 3.751773 33.76596 1 9 0.00025597 *** # Roy 1 3.751773 33.76596 1 9 0.00025597 *** # --- # Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # # ------------------------------------------ # # Term: angle:noise # # Response transformation matrix: # angle1:noise1 angle2:noise1 # X0_absent 1 0 # X0_present -1 0 # X4_absent 0 1 # X4_present 0 -1 # X8_absent -1 -1 # X8_present 1 1 # # Sum of squares and products for the hypothesis: # angle1:noise1 angle2:noise1 # angle1:noise1 416160 171360 # angle2:noise1 171360 70560 # # Multivariate Tests: angle:noise # Df test stat approx F num Df den Df Pr(>F) # Pillai 1 0.918223 44.91353 2 8 4.4722e-05 *** # Wilks 1 0.081777 44.91353 2 8 4.4722e-05 *** # Hotelling-Lawley 1 11.228381 44.91353 2 8 4.4722e-05 *** # Roy 1 11.228381 44.91353 2 8 4.4722e-05 *** # --- # Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # # Univariate Type III Repeated-Measures ANOVA Assuming Sphericity # # SS num Df Error SS den Df F Pr(>F) # (Intercept) 19425660 1 292140 9 598.449 1.527e-09 *** # angle 289920 2 64080 18 40.719 2.087e-07 *** # noise 285660 1 76140 9 33.766 0.000256 *** # angle:noise 105120 2 20880 18 45.310 9.424e-08 *** # --- # Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # # # Mauchly Tests for Sphericity # # Test statistic p-value # angle 0.96011 0.84972 # angle:noise 0.89378 0.63814 # # # Greenhouse-Geisser and Huynh-Feldt Corrections # for Departure from Sphericity # # GG eps Pr(>F[GG]) # angle 0.96164 3.402e-07 *** # angle:noise 0.90398 3.454e-07 *** # --- # Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # # HF eps Pr(>F[HF]) # angle 1.217564 2.086763e-07 # angle:noise 1.117870 9.424093e-08 # Warning message: # In summary.Anova.mlm(a1$Anova, multivariate = TRUE) : # HF eps > 1 treated as 1
Hope that helps!
-
-
AuthorPosts
Viewing 1 reply thread
- You must be logged in to reply to this topic.